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STABLE CONSERVATIVE DIFFERENCE SCHEMES FOR THE 

QUASILINEAR PARABOLIC HEAT-CONDUCTION EQUATION 

V. I. Gladkovskii and V. G. Karolinskii UDC 518.61:536.242 

An efficient algorithm is developed for solving the quasilinear heat-conduction 
equation using asymmetric difference schemes satisfying the discrete analog of 
the conservation law. 

The optimum regimes of plasma-mechanical treatment (PMT) [i, 2] depend essentially on 
the temperature field in the surface layer [3]. A more careful examination of processes of 
interaction of high-intensity heat fluxes with solids leads to the necessity of allowing for 
the temperature dependence of the thermophysical properties of the material being treated. 
In order to eliminate structural phase transitions in brittle metals during PMT [4], as well 
as to prevent the process of development of destructive temperature stresses, it is necessary 
to provide conditions for the heating of only that part of the volume of the component which 
is subject to removal [i]. It is proposed to calculate the temperature field in an isolated 
volume of a half-space by an approximate numerical solution of the quasilinear heat-conduc- 
tion equation [5], with boundary conditions of the first kind, using explicit, absolutely 
stable, asymmetric difference schemes (ADS), satisfying a certain discrete analog of the law 
of conservation of energy, applying averaging by the arithmetic-mean method [6]. The initial 
ADS are obtained from the heat-conduction equation using the integrointerpolation method [5] 
with subsequent splitting [7]. 

It is well known that the numerical solution of problems of mathematical physics imposes 
especially rigorous demands on both the memory volume and the operating speed of computers 
[8]. A promising method of overcoming the difficulties arising in the solution of problems 
of mathematical physics is the use of parallel multiprocessor computer systems [9]. The ADS 
method has an algorithmic structure not requiring a preliminary procedure of conversion of a 
sequential algorithm into a parallel one [i0] for the programmed execution on multiprocessor 
computers. The reduction of computer time in the use of multiprocessor computers plays an 
especially important role in the solution of nonlinear multidimensional problems of mathe- 
matical physics. 

Let us consider the quasilinear heat-conduction equation 

OT c9 3T 
-- k (T)-- (I) 

Ot Ox Ox' 
where T ~ 0 is the temperature, while the dependence k(T) ~ 0 of the coefficient of ther- 
mal conductivity is assumed to be given. For the unique solvability of the problem it is 
necessary to assign the boundary conditions 

T(O, t )= fl (t)i T(l, )) =-f2(t) (2) 

and initial conditions 

Introducing the heat-flux function 

T(x, O) = ~o(x). (3) 

3T 
W = k ( T ) -  (4) & '  

we rewrite Eq. (i) in the flux form 
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We approximate Eqs. (4) and (5) on a grid with nodes x i = ih, i = i, 2, N -- i, h = ~/N, 
t k = kT, k = 0, i, .... We apply the integrointerpolation method [5] to Eq. (5). For this 
we integrate (5) first over time in the band t k < t < tk+ ~ and then over the spatial coordi- 
nate in the band xi_~/2 < x < i+i/2. Applying the simplest quadrature formulas and carrying 
out averaging on the left side of the equation, we arrive at an expression of the type 

T 
T--T= 2h (W,/2--~Y-I/2+W,I~--W-Ip), (6) 

where the following notation without indices is used for convenience in writing: T - Ti k+1, 

k ^ k+1 W k T - Ti, W~/2 - Wi+~/2, W-I/= - i-~/=, etc. Equation (6) is a uniform and conservative dif- 
ference scheme for the quasilinear heat-conduction equation (5) with the condition that Eq. 
(4) is also approximated on a grid using the integrointerpolation method [5]. Therefore, we 
approximate the heat fluxes as 

T--T_ 
~71/2 = a l / 2  9 + - - 9  W_llz==a-l12 (7) 

h ' h 

e t c . ,  where  a~/a = a(T+, T), a-~/= = a ( T ,  T_) ,  e t c . ;  a i s  a c e r t a i n  f u n c t i o n a l  a p p r o x i m a t i n g  
t h e  c o e f f i c i e n t  o f  t h e r m a l  c o n d u c t i v i t y  on a g r i d  w i t h  an e r r o r  O(h =) [ 5 ] .  As one would 
e x p e c t ,  c a l c u l a t i o n s  showed t h a t  t h e  b e s t  r e s u l t s  a r e  o b t a i n e d  by u s i n g  e q u a t i o n s  o f  t he  
t y p e  

~'I~ = /L + ~ (8) 
2 

We apply the method of fractional steps [Ii] to the difference scheme (6). 
Eq. (6) yields two equations: 

T - - T - - - - h - - (  i i  - -  W_,I2), 

T . 

Splitting 

(9) 

(i0) 

Substituting equations of the type (7), (8) into (9) and (i0), we obtain two explicit asym- 

metric difference schemes: 

_% 
T = ~T+ +~r + ~_, (11) 

~_- ~9+ + ~T +~r_ (12) 
The arrows indicate the direction of calculation: A calculation by Eq. (ii) is carried out 
from left to right while one by Eq. (12) is carried out from right to left. The end result 
at the top time layer is found by the arithmetic-mean method [6] : 

= (T + T)12. (13) 

The coefficients A, B, and C in schemes (ii) and (12) are calculated from the formulas 
_~ --> -+ ^ 

,1 = Ixva,/~, ~ ==-~(1 - va , / 2 ) ,  c = Ixva-,/~., 

= Ixya,/2, B == ~'( |  - -  7 a - , / j ,  C =: IxTa_,/2, ( 1 4 )  
< - .  

~'---- 1/(1 -~ ? a _ , / J ,  Ix = 1/(1 + ya, /2) .  

Comment. The presence of the functionals aI/2 and a-~/2, approximating the values of the 
nonlinear coefficient of thermal conductivity in the top time layer, on the right sides of 
Eqs. (14) leads to the necessity of introducing an iteration process for the calculation of 
Eqs. (14). The initial approximation in the top time layer at all the spatial nodes except 
the two boundary nodes is found as follows. Using a Taylor series expansion, it is easy to 
show that 

9_ = (9_._, + 9)/2 -,~ o(h~), ~'~ = ( f  + ~,_=,)/2 + 0@) .  (15) 

In fact, for the first equation in (15), for example, we have 
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Fig. i. Results of the 

comparison: i) analytic 

solution; 2) nonconserva- 
tive solution; 3) conser- 
vative solution, x, m; 
T, deg. 

ag_ h ~ ~ T -  
TL,~ = T_ - -  h --fZ-z §  ax ~ + 0 (h'), 

a i '_  h~ a ' f  _ + o (m). 
f = f -  q--h - - a T  + 2 ax ~ 

Combining the two latter expressions, we obtain the first of the equations (15). The second 
equation is demonstrated similarly. From (15) it follows that 

= 2 f _  - -  ~_~ + o (h~), T = i f +  - -  f+~  + 0 (h~). 

And these expressions represent the initial approximations being sought. At the boundary 

nodes we assume, for example, that 

The presence of the iteration process can lead to violation of the heat balance even 

when using conservative difference schemes [12]. To eliminate this defect it is proposed to 
use a discrete analog of the law of conservation of energy at each time layer, and for the 
difference scheme under consideration it can be represented in the form 

N* N h-~ 1 
h + l  T m -n~ ~Ti = ~T~ q---~- Z (WA~+o,a - -  W,.~). (16) 

i= l  i=I  m=l  

The first sum on the right of the equals sign is found once in the calculation of the initial 
conditions. The remaining sum on the right side of the equation is calculated at each time 
layer after the execution of the algorithm (11)-(13). Then, simultaneously with the transi- 

tion to the next time layer, summation is carried out on the left side of Eq. (16), until 
k+1 approximate equality is reached for a certain i = N*. The remaining values of T i are 

equated to zero for all i > N*. The violation of heat balance is thereby eliminated. A 
computational experiment, a description of which is given below, confirmed the efficiency of 
the application of the discrete analog of the law of conservation of energy to restore the 
conservativity of scheme (6) violated in the use of the iteration process. 

The computational experiment was carried out with an equation of the type (i) with a 
coefficient of thermal conductivity k = koT s, ko = 0.5, s = 2 [13]. The boundary conditions 
were chosen in the form 

T(0 ,  t) = 10 ] " F ,  T(~, l) = 0 ,  (17 )  

while the initial conditions were determined, as in [14], from an analytic solution repre- 

senting a thermal wave traveling along a zero temperature front with a velocity V, 

sF j]/s 
[ (Vt--x,--x) at x~.~x 1+ Vi 

T(x,  t )= :  [ ko (18) 

0 at x ~ x l - -  ~- Vl 

a t  t h e  t i m e  t = 0 . 0 l .  The v e l o c i t y  i s  V = 5 .  

The results of the comparison with the test problem are presented in Fig. I. The cal- 
culation was made up to the time t = 4.01 with steps of T = 0.08 and h = i. The comparison 
was made with the analytic solution (18), as well as with a grid function obtained using 
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the PKGI subprogram from the packet of scientific subprograms developed by the Institute of 
Mathematics, Academy of Sciences of the Belorussian SSR [15]. The analytic solution is shown 
by the solid line in Fig. i, the nonconservative grid function is denoted by the symbol +, 
and the conservative grid function by the symbol o. The PKGI subprogram gives almost the 
same error as the ADS with restoration of conservativity. From all the foregoing, it fol- 
lows that conservative ADS can be used to calculate thermal waves on actual grids with suffi- 
cient accuracy for practical needs. 

Thus, a means of constructing conservative, explicit, absolutely stable ADS for the 
quasilinear heat-conduction equation using the integrointerpolation method with splitting is 
proposed in the paper. The efficiency of the use of the discrete analog of the law of con- 
servation of energy to restore conservativity, violated due to the application of the itera- 
tion process, is illustrated on a numerical example The absolute stability of the ADS can 
be shown using the operator-difference method proposed by Samarskii [5]. In working on the 
paper the authors were guided by an idea advanced by Kolesnikov [16, 17] on the promising 
nature of the application of methods of gas dynamics for purposes of modeling high-intensity 
thermophysical processes. Certain experimentally revealed limits on the relation between the 
time step and the spatial step, which was also noted by other authors [18], should be men- 
tioned. 

Analogous results can be obtained not only for Eq. (i) but also for other equations of 
mathematical physics (including multidimensional and nonlinear equations). For example, a 
stable ADS for the two-dimensional quasilinear heat-conduction equation 

OT _ __OWX ~ OWY , (19)  

Ot Ox Oy 
w h e r e  WX = k(T)aT /ax  and WY = k(T)aT /ay  a r e  h e a t - f l u x  f u n c t i o n s ,  l o o k s  l i k e  t h i s :  

T, = r~, {r + O x  la,/2f+ - -  A-V= ( r  ---T-)I + GY lfi,~l~T,§ - -  A.-,12 (T - -  T._)]}, 

~, = ~ {g + 6X [A~I2 (g+ - -  T) + A-~/2T-] § GY [ A  ,/2 (T ,+ - -  T) + A,-~/2T,- ] } ,  

Ta = ~a { T  + GX [A, 12T+ - -  A_~ j= (T  - -  T_)] § GY [A~/2 (T, + - -  T) + ~,_~/2T,_]}, 
. . . .  ^ _ _ -  " . . . . . . .  

T:= ~{Tq-  6X[A,I2(T+--T)+ A-,12T-] + 6Y[A.,I@.+--A.-,12(T T,_)]}. (20)  

The end result at the top time layer is found using the expression 

~' = (Ti -k T= H- ?'a + T~)/4. (21) 
In this case the coefficients ~ and A are calculated from the equations 

gx = I/(1 -k GX'A,12 + GY.A,I/2), p~ = 1/(1 k GX.)_,I= + oY.A_,/=), 
~a : :  1/(1 + GX.A~I2 § GY.A,_~I2), ~ = 1/(1 + GX.~_~I2 + GY.A,,/2), 

AI/~ = (k+k+)12, A-II~ = ( k _ +  k)/2, A~I2 = (k + &+)12, 

A'/~ = (k + ~+~2, ~_,/~ = ( ~ - +  ~)/2, h, , /~ = (~ +k,+)/~,  

A _,/~ =: (k ,_  @ k)12, A._,/~ = ( s  @ ~}/2. (22)  

The comment made with regard to Eqs. (14) also applies in equal measure to gqs. (22). 

Boundary conditions of the first kind, which are not written out here, are understood 
in the algorithm (20)-(22) of the solution of the two-dimensional quasilinear heat-conduction 
equation using the ADS. Generalization of the proposed method of derivation of the ADS for 
the case of boundary conditions of the second or third kind can be done directly. 

NOTATION 

T, temperature; t, time; x, spatial coordinate; k(T), coefficient of thermal conductiv- 
ity; f1(t), f2(t), ~(x), functions; l, length of the interval of integration; W, heat flux; 
h, T, steps of the grid along the spatial and time coordinates; i, k, indices; a, functional 
approximating the value of the coefficient of thermal conductivity on the difference grid; 
y = T/h 2, Courant number; ~, coefficient; N*, number of the node at which the equality (16) 
is (approximately) reached; ko, coefficient; s, exponent; V, velocity of propagation of the 
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thermal wave~ xl, origin~ WX, WY, two-dimensional heat-flux functions~ GX = T/HX 2, GY = 
T/HY 2, Courant numbers (along the coordinates); HX, HY, steps of the two-dimensional differ- 
ence grid along the X and Y axes. 
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